skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "de_Dios_Pont, Jaume"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the problem of predicting the output behavior of unknown quantum channels. Given query access to an n-qubit channel E and an observable O, we aim to learn the mapping ρ↦Tr(OE[ρ]) to within a small error for most ρ sampled from a distribution D. Previously, Huang, Chen, and Preskill proved a surprising result that even if E is arbitrary, this task can be solved in time roughly nO(log(1/ϵ)), where ϵ is the target prediction error. However, their guarantee applied only to input distributions D invariant under all single-qubit Clifford gates, and their algorithm fails for important cases such as general product distributions over product states ρ. In this work, we propose a new approach that achieves accurate prediction over essentially any product distribution D, provided it is not "classical" in which case there is a trivial exponential lower bound. Our method employs a "biased Pauli analysis," analogous to classical biased Fourier analysis. Implementing this approach requires overcoming several challenges unique to the quantum setting, including the lack of a basis with appropriate orthogonality properties. The techniques we develop to address these issues may have broader applications in quantum information. 
    more » « less